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Abstract: The qus of this research is to develop a Lagrange multiplier (LM) test of spatial
dependence for the spatial autoregressive model (SAR) with latent variables (LVs). It was arranged
by the standard SAR, where the independent variables were replaced by factor scores of the
exogenous latent variables from a measurement model (in structural equation modeling) as well as
their dependent variables. As a result, an error distribution of the SAR-LVs should have a different
distribution from the standard SAR. Therefore, this LM test for the SAR-LVs is based on the new
distribution. Thq%imation of the latent variables used a weighted least squares (WLS) method.
The estimation of the SAR-LVs parameter used a two-stage least squares (25LS) method. The
SAR-LVs model was applied to the model with a positive and negative spatial autoregressive
coefficient to illustrate how it was interpreted.

Keywords: Lagrange multiplier; spatial autoregressive; latent variable

1. Introduction

Researchers have often faced models involving latent variables and analyzed the relationships
between two or more of those latent variables simultaneously. Latent wariables are unobserved or
unmeasured variables [1] and measured by connecting to the observed variables because they
cannot be dirmv measured [2]. The statistical methodology that is able to accommodate these two
objectives is structural equation modeling (SEM). SEM is a statistical method used to test the
relationships between latent variables (path models) and between its observed variables
(confirmatory fgper models) [2]. In general, SEM has two submodels, namely the measurement
model and the structural model. The structural model describes the relationship between latent
variables, while the measurement model is the relationship between indicators and the latent
variables that construct it.

In social research, analyse: volving latent variables and at the same time having a spatial
effect have often been found. Spatial dependence may be caused by different kinds of spatial
spillover effects. There are two frameworks that involve spatial data in the SEM model, namely at
the level of the measurement model or the structural model. The involvement of spatial data gj the
level of the measurement model is commonly used to analyze multivariate spatial data [3], i.e., when
several variables are measured at the same locations over a spatial area, and they are often correlated
with each other. Each of them might also be correlated across the locations because of geographic
similarities of the different locations.

Christensen and Amemivya [4] suggested a model witlgg latent variable that is distribution-free
to analyze multivariate spatial data. However, it was limited by the assumption of a linear
relationship between observed and latent variables that might not apply to Poisson and binomial
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data. The paramg¥rs of the model were estimated by means of a moment method. Wang and Wall
[3] proposed the generalized common spatial factor, which was an extension of the traditional factor
analysis el. In this model, it was assumed that the common factors were spatially correlated and
extended to handle more types of observed data from exponential families, especially Poisson and
binomial data.

Hogan and Tchemis [5] proposed the method of a Bayesian hierggghical model for analysis
factors of spatially correlated multivariate data. At the first level, the distribution of a ve of
manifest variables was conditional on an underlying latent factor in each location, whereas at the
second level, the area-specific latent factors had a joint distribution that combined spatial
correlation.

In contrast to previous researchers that only an d multivariate spatial data in measurement
models in the SEM model, Liu et al. [6] developed a generalized spatial structural equation model
(GSSEM). They joined the generalized common spat@gygfactor model proposed by Wang and Wall in
[3] and SEM that calculated spatial correlations. GSSEM can also be extended to spatial
correlations that can be added to the measurement model. Congdon [7] used the factor analysis on
the measurement model. In this model, the construct was observed through indicators. Indicators
allowed both spatial correlation and correlation with one another. The relation among constructs
that are nonlinear was approached using a spline regression.

Oud and Folmer [8] proposed a SE pproach to the spatial dependence model. They
combined the standard spatial model in [9] with the multiple indicators multiple causes (MIMIC)
model in [10]. In this approach, the spatial weight that described the spatial spillover effects was
located in the structural model. This approach was more flexible and informative compared to
modeling that gave the spatial weight to the measurement model. The parameters of this model
were estimated using Full Information Maximum Likelihood (FIML) and resulted in an estimator to
control the bias of endogeneity due toghne interaction between the dependent variable and its lag.

Anekawati et al. [11] conducted modeling of education quality in the senior high school level
using the spatial SEM approach. Although they allocated the spatial weight on the structural model,
their work had a different perspective on the model in [8]. They developed the spatial SEM model
from the stP:lard spatial model by Anselin in [9] but replaced the dependent variables by
endogenous latent vﬂbles, as well as independent variables. The latent variables were estimated
as the factor scores using the partial least squares (PLS) method through iterative estimation
developed by Trujillo in [12]. The factor scores were modeled by involving the spatial effects, and
the spatial dependence of this model was tested using the Lagrange multiplier (LM) test. The results
of the spatial degmndence test led to the spatial autoregressive (SAR) model. Furthegmore, this
model was called the spatial autoregressive model with latent variables (SAR-LVs). The parameters
of the SAR-LVs model were estimated using maximum likelihood estimation (MLE).

Anekawati et al. [13] estimated the parameters of the SAR-LVs model from Anekawati et al. in
[11] using the generalized method of moment (GMM), which was developed by Kelejian and Prucha
in [14,15]. The SAR-LVs model in [13] indicated a better fit for the model than the MLE method since
it produced a higher R-square. Additionally, the GMM was computationally easier than MLE.

This idea can be used as alternative modeling involving latent variables an@gspatial data
simultaneously, as the research limitation in [16]. The research purposes in [16] were to identify the
relationship between vulnerability factors reaed to social, economic, and environmental aspects,
and economic losses from natural disasters in 230 local communities in South Korea. The social,
economic, and environmental aspects were latent variables measured by connectig® to the observed
variables. The social aspect was constructed by two indicators, namely the percentage of the
population over age 15 without elementary school completion and a minority percentage of
foreigners. Additionally, the economic and environmental aspects were latent variables. However,
the relationship was modeled based on indicators, which were not latent variables. It was less
pregise to identify the research purpose. That study revealed the limitations of the study, which was
an indicator-based approach for the identification of vulnerability factors. Therefore, the method in
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this study provides an alternative solution for the spatial model that involves latent variables,
especially focusing on the spatial dependency test using the LM test.

Oud and Folmer [8] did not perform a diagnostic test of spatial dependence, so there was no
direction in determining whether the model led to the spatial autoregressive model or the spatial
error model. Anekawati’s research works in [11,13] tested the spatial dependence using the
Lagrange multiplier (LM) to diagnose spatial dependence.

One of the constructions of the test r?)arametric hypotheses based on asymptotic theory is the
LM test [17]. Anselin [18] developed the diagnostics for spatial dependence using the LM test. The
LM approach seems reasonable and relatively easy based on estimation under the null hypoth
[17], namely, in its most simple form. Yang [19] introduced a residual-based bootstrap method for
asymptotically refined approximations to the finite sample critical values of the LM statistics.

The LM test of spatial dependence [18,19] did not involve latent variables for the standard SAR
model. Anekawati’s work [11,13] used the LM test of spatial dependence for the SAR-LVs model,
but an error distribution of the model was assumed the same as the standard SAR model in [9,18].
The LM test for the standard SAR model in [9,18] had an assumption that error was normally
distributed £ ~ N (0,0?I). Meanwhile, the SAR-LVs model was modeled based on the standard SAR
model, where factor scores replaced the independent and dependent vggiables. The factor scores
were the estimation result of the latent variables in the submodel in SEM, namely, the measurement
model. The measurement model had the assumption that the error was normally distributed,
namely, 8 ~ N(0,0;) forexogenous and £ ~ N(0, 0, ) for endogenous, while the error distribution
in the standard SAR model was € ~N (0,02]). As a result, the error distribution of SAR-LVs
model should have a different distribution from the error of the standard SAR model. In this paper,
an attempt is made to fill this gap. The focus of this study is to develop a Lagrange multiplier test of
spatial dependence for the spatial autoregressive model (SAR) with latent variables (LVs).

To complete this paper, the estimation of latent variables into factor scores uses the weighted
least squares (WLS) method, so that the error gigtribution of the SAR-LVs model is constructed from
the result of this estimation. The estimation of parameters of the SAR-LVs model uses the two-stage
least squares (25LS) method. In the last section, the SAR-LVs model is applied for cases of the
positive and negative spatial autoregressive coefficient to provide an interpretation of the spatial
autoregressive coefficient.

2. Materials and Methods

2.1. Sim‘inl Autoregressive Model with Latent Variable (SAR-LVs Model)

consists of two basic components—the structural model and measurement model in [2].
The measurement model represents the relationship between the manifest variable and exogenous
latent variables (1) or endogenous latent variables (2), while the structural model describes the
relationship among the latent variables (3). Bollen in [1] wrote the measurement and structural
model as Equations (1)-(3).

x=A, E+8 with &~ N,(0,0;) (1)
y=A;n+¢e with £ ~Ng(0,0,) ()

n=Bn+FE+Z (3)

mere 1 is the (g x 1) endogenous random vector, g is the number of the endogenous variables,
€ is then;r x 1) exogenous random vector, p is the number of the exogenous variables, B is the
(g x q) coefficient matrix that shows the effect of the relationship of an endogenous latent variable
to another endogenous variable, T' is the (g x p) coefficient matrix which shows twffect of §
relationship to m, ¢ is the (g x 1) random error vector, y is the (B x 1) observed wvector of the
endogenous variables, B is a total number of indicators of the endogenous variables, x is the
(A x 1) observed vector of the exogenous, A is a total number of indicators of the exogenous
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variablenAy is the (B x q) C.oefﬁcient matrix which shows the relationship of y to n, A, is the
(A x p) coefficient matrix which shows the relationship of x to § €%is the (B x 1) measurement
error vector of y, and & isthe (A x 1) measurement error vector of x

Assumptions that must be fulfilled are E(M) =0E(&)=0,E(Q) =0,E(X])=0,E(e")=
0,E(8) = 0,(I — B) is nonsingular, and the element of error vectors of measurements, namely &;
and g, are homoscedastic and nonautocorrelated across observations (see [1]).

Anselin wrote the standard SAR model in [9]:

y =AWy  +XB +& with € ~ N (0,07I), )

where y° is the (T'x 1) spatially lagged dependent vector, T is the number of the observed units,
X is the (T x (p+ 1)) exogenous matfff 2 is coefficient of y*, B is the ((p+ 1) x 1) parameters
vector of exogenous, W is the (T x T') spatial weight matrix with the main diagonal elements being
zero, £ is the (T x 1) disturbance vector, where it iﬂ'ne classic homoscedastic situation. The queen
contiguity method was used for spatial weighting. In queen contiguity, Wi is defined as 1 for the
entity where the common side or the common vertex meets the region of concern, and Wi is defined
as 0 for other regions [20].

Oud and Folmer in [8] wrote the SAR-LVs model in the form of the MIMIC. The proposed
model was 7j = AW + Xy + €, where A was the spatial lag coefficient of the endogenous variable,
W was the contiguity matrix, and X was the observation matrix of the explanatory variable.

The SAR-LVs model is a model that involves latent variables, and the unit of observation is
location. The SAR-LVs model is a standard SAR model in which the independent and dependent
variables are latent variables. In the SEM model, there are latent variables that cannot be measured
directly as a sample unit. Therefore, in this work, to represent the latent variable in the standard SAR
in Equation (4) is changed by the factor score. The latent variable is replaced by the factor score from
the measurement model in Equations (2) and (3) as a measured and random unit sample. As seen in
Equation (4), the spatially lagged dependent variable (y°) is changed by the endogenous latent
variable (), and the exogenous variable (X) is changed by the exogenous latent variable (§), which is
previously estimated using the WLS method. The result of estimation of the latent variable is
denoted by fj =1 and f = K. This SAR-LVs model does not use the MIMIC model, since there are
no exogenous or endogenous variables that are observed variables, and the endogenous variable is
limited to only one.

Thus, the SAR-LVs model in Equation (4) changes to:

[=KB+2Wl+e, 5)

where [ is the the (T x 1) endogenous factor score vector, K is the (T % (p + 1)) exogenous factor
score matrix, and B is the ((p + 1) % 1) regression coefficient vector.

2.2. Estimation of Score of Latent Variable (@
18
The factor score is the estimation result of the latent variables, both the endogenous and

exogenous variables in the measurement model. The method used is the WLS, which is by
minimizing the sum squared errors that are weighted by the error variant matrix. In the estimation
process, to obtain a factor score, it is assumed that the value of the loading factor and the error
variant matrix are constant. 7

In the equation of the measurement model of the exogenous latent variable (1), where p is the
number of the exogenous latent variable, a; is the number of indicators of the ith exogenous latent
variable, and ¥V, a;=4.8 is an error, where 8~ N4(0,05) with @54 xA) is the
covariant—variaﬁatrix of measurement error of observed variable x, namely

0, = dia (0'2 N LTI I T A s A L )
& G\ 98117 %oz, Stan1’ “S(ar)z’ “S(az)z 8(az)z S’ “ iz Stapip

The distribution of x is obtained through the properties of the expected value and variance of a
random variable. It is assumed that the value of A, and @4 are constant. E(x) = E(A, £+ 8) = A, &
and var(x) = var(A, £+ 8) = var(8) = 05. Therefore, if x=A, €+ 8 and 8 ~ N4(0,05) then the
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distribut of x is x ~ Ny(A,& O4). Suppose that a random sample T is given from a random
variable x

witht=1,2, ..., T so x; ~ Ny (A&, 85). The probability function of x; is
A1 1 o
FOX) = @) 2105172 exp {3 (5 — Ag)OF (xe — Ak
The likelihood function is

L(E05) = (2m) "7 05 exp {~2Q.} with Q. = FT_,(x — A& 05 (xc — AK)

The latent variable ¥ is estimated using the WLS method with optimization L(§ 0 ).
Maximum L (§,8;) < minQ, by adding the weight of an error variant matrix @4 is obtained as
Y& = (ALO5 A (AO )X X, or can be written in rm'ix form and contain each element as

X1 Xz o Xaur
X1 Xpiz vt X@ir
Xaprr  Xapiz 7 Xagir
- - x X -
T T (1)21 (1)22 (12T
;“ ;Lz X221 X@az 7 Xer
fa fao bn baesay@geh| Poos
\: = Tt X@apz1  Xayyzz 7 X(ay)22
‘c’pl E’DZ ‘EpT : : [ :
Xwpr  Xwpz 7 Xpr
X2p1  X@pz T X2)p2
Xappr Xaplpz " ¥(aplpr
X1 Xz 7 Xaur
X Xz 7 Xenr
a1 Fayz 0 Xair
7 7 7 Xmza Xz o Xer
[, [, [,
/‘Ell ‘ELZ ‘ELT\ X@)21 Xz o Xapor
By assuming matrix | “21 22 Zﬁ |=K" and X = : : ’ : S0
. . = X(az)21 Xaz)zz  Xag)22
1 S Spr i i i
Xpr  Xupz 7 Xapr
X2p1  X@pz 7 X(@pz2
Xap)pr Xfap)pz "7 X(ap)pT
K'= (A;05'A,)(AL051X. (6)

X in Equation (6) is a random observation matrix. Based on Definition A.1in [21] (Appendix A),
X has normal distribution X ~ Ny (A%, e’,0; ®Iy), where ey, = (1, ...,1).

The definition of the characteristic function of the random matrix X is ¢.(Z) = E [etr (XZ")],
where (=+v—1.If part of Equation (6) is assumed (A}05'A,)(A%05) = P then Equation (6) can be
simplified into K'=XP . The characteristic function of K' is ¢y(Z) = E [etr(u(PX)Z")] =
E [etr (tP(XZ"))]. Based on Theorem B.1, the characteristic function of K’ can be changed into
¢w (Z) = E [etr(1X(Z'P))]. If Z; = Z'P then the characteristic function of K' can be changed into
$i (Z) = Efetr (XZ3].

The distribution of X is X~ N, (A.§.e,8;®I1;) and K' = XP. Based on Theorem A2, the
characteristic function of K' is ¢y (Z) = etr (1Z1A,§,e' —1/2210;5Z,1;) . If Z| is changed by Z] =
Z'P then the characteristic function of K' is ¢yg/(Z) = etr ((Z'P)AEe' = 1/2(Z'P)' 05 (Z'P)1;)
Furthermore, P ischanged by P = (A{05'A,)(A,03"), so the characteristic function of K' is
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bw(Z) = etr (Z'ge' —1/22"(A®5 A) T Z1;) 7)

Based on Theorem A.2 and Equation (7), K' is the matrix variate normal distribution with
mean §.e' and covariate matrix (A,@5'A)7'®I, and is notated by K’ ~
Ny, (§.e', (AL ®5'A,)"'®I;). Based on Theorem A.1, K is the matrix variate normal distribution
that is notated by:

K ~ Np, (e§, 1:®(A,05'A)7Y). (8)

In this paper, the number of the endogenous variables is limited only to one. The covariance
matrix of the measurement error the observed variable for y is ©,., namely @, =

diag (cr:;, r:rf;, sy 0’:—8 ) where B is the number of indicators of the endogenous latent variable. In the
se way as the previous estimation with the exogenous latent variable and by assuming that vector
31

Yii Mz - VT

(flafls ~ A) = and Y= 720 Y2 5 %7 i obtained
g1 ¥ez 7 Yer
U'=(A, 0:1A,) Ay 071, 9)
and its distribution is
' _ -1
1~ Ny (ent, (A, 871 A) 1T). (10)

Theorem A.1, A.2, and B.1 are provided in Appendix A.

2.3. The Error Distribution of The SAR-LVs Model

The equation of the SAR-LVs model from the estimated factor score can be arranged as
Equation (6) and adding f, it can be written as

I=KB+AWI + ¢ (11)
or can be written in the matrix form
[ 1 k k -k Bo
1 / 11 12 lp\ By I £y
L — 1 ka1 ka2 - kyp B, I, + B2
Ly \1 kpy kppo o0 Ky B:p } Iy Er

e oM

where K ~ Ny, (€&, 1,®(A,05'A,)™") is Equation (6) and I~ Ny (en, (A, 0:1A,) 1) is
Equation (10).

The SAR-LVs model (11) is a spatial regression model by considering I as a response variable
and K as a predictor variable, both of which are random. Thus, the function of 1 is f(1|K), so that
the wariable K is no longer random but fixed. As a result, the error in Equation (11) is £ =
(I —AW)Il — KB where [ is a random variable, K is fixed and is assumed not to correlate with g,
and cov(l,K) # 0.

The expectation value of € is E (g) = (1 - AW)en, — KB, and the variance of £ is var(g) =

(1-2w) (A}, 8;2 Ay)_l(] — AW)', so the error distribution of € is
£~ Np ((1-2W)en, — KB,0), (12)
where
0 =(1—AW) (A, 0:1A,) 7 (1 - AW)". (13)

The error distribution of the standard SAR model is € ~ N (0, o’ I), while the error distribution
of the SAR-LVs model is as Equation (12). This error distribution is used to construct the LM test.
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2.4. Test of Dependency Spatial

The Lagrange multiplier (LM) tst of the SAR-LVs model, as shown in Equation (11), is a test
based on estimation under the null hypothesis. The likelihood function 1 in the SAR-LVs model is
obtained by replacing £ and multiplying by the Jacobian in the Gaussian function so that the
likelihood function for the SAR-LVs model is obtained: LAB. o) =
wT/2|@|7/%|Clexp (—%E'B_]‘E), where €= (I—AW).

The log-likelihood function for the SAR-LVs model is L(A,B, ©;1) = —%ln || — éln|3| + In|C| —
%(E'B_Lﬁ), where the value of @ isasin Equation (13), and £ = (I - AW)I — Kp.

Breusch and Pagan in [17] defined LM test statistics as follows: LM, = D} ®;;'D;, where ®5! is
an element of an information matrix measuring k x k whosg[#lements are the second derivative of
a2L(0
T
first derivative of the log-likelihood function of A where A = 0.

The value of P;'and D, were decomposed in Appendix A, which obtained W;!=
—p‘L((m]t — KB)'WW'(en, — KB))_l so D, = p(WKB)'(l — K ) where (I —Kp) is an error of the
OLS regression model, I — KB = & so D; = p(WK)'&. The LM statistic test is

s — —(p(WKB)'&)?
* 7 plen, — KB)WW'(en, — KP)

where p = (A;,B;l Ay) and d = (en, — KB)'WW'(en, — KB), so the value of test statistic LM
becomes

each parameter estimated as lTJg =E [— ] The test was under the null hypothesis, so ﬁl is the

_—(pWKB)'®)" 14

LM, o

The LM statistics LM, follows the asymptotic distribution of ¥,

2.5. Estimation of Parameter of SAR-LVs Model

If the parameter of the SAR-LVs model in Equation (11) and its error distribution as Equation
(12) are estimated by the OLS, then the estimator is biased and inconsistent, since there is a case
where the regression variable (WI) correlates with the error £ or cov(WL g) # 0. If the model is
estimated by the moment method, the overidentified condition is obtained. The following explains
the overidentified condition.

The Equation (11) can be simplified as follows:

l=Za+eg, (15)

where Z is Z= (K/WI) and has the (T x (p 4+ 2))-sized, & is @ = (B'|1)’ and has the the ((p +
2) x 1)-sized.

In this work, & as Equation (15) was estimated by the 2SLS method as perfor by [14,15],
namely two steps of the ordinary least squares (OLS) method as follows: (i). The 25LS method
requires an H instrument variable, which is a joint of the K matrix and the WK matrix or written
as H = (K|WK). The instrument variable H is valid because it does not correlate with £ and
correlates with regressor WI; (ii). Regress WI on instrument variable H to obtain Wl =
H(H'H)"'H' (WU); (iii). Regress I on Z to obtain

&= (T2, (16)
where Z = (K|\ﬁ) and @which contains B and A.

3. Results and Discussion

In the discussion, this study examined two cases or models developed with the results of
positive and negative spatial autoregressive coefficient to provide an interpretation of the spatial
autoregressive coefficient. The first case was the education quality model developed by [13], with
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updated data in 2018 and showing a negative spatial autoregressive coefficient. Meanwhile, the
second case related to a poverty model conducted by [22] producing a positive spatial
autoregressive coefficient.

The educationuality model for senior high schools in Sumenep Regency involved 27
observation units, one endogenous latent variable, and two exogenous latent variglfles. The
endogenous latent variable was the education quality with three indicators. Indicators of education
quality were the ratio of the gross enrolled number of senior high school students to the number of
children aged between 15 and 18 years in each district (Y11)—the ratio of the number of accredited
senior high schools with at least B levels to the total number of senior high schools in each district
(Y12) and the average of national exam scores of senior high school students in each district (Y13).

Exogenous latent variables were school infrastructure and socioeconomic conditions. Indicators
of ghool infrastructure were the proportion of the number of schools with a minimum classroom
space according to the regulations of the national education ministry (X11), the proportion of the
numbers of schools with laboratories according to the regulations of the national education ministry
(X12), and the proportion of the number of schools with libraries according to the regulations of the
national education ministry (X13).

Indicators of socioeconomic conditions were the ratio of the number of households running a
home industry or with a shop at home to the total number of households in each district (X21) and
the ratio of the number of households using clean water to the total number of households in each
district (X22). The model is shown in Figure 1.

x13

school
infrastructure

Quality of
wducation

Seclo-esconamie
condition

Figure 1. The education quality model.

Latent variables were estimated as in the Equations (6) and (9), then were modeled as in the
Equation (11). The estimation of the model parameters as the Equation (16) used the Matlab
software, and the results are shown in Table 1. The LM test based on the Equation (14) used Matlab
software, and the obtained value LM, was -2.3272. The value of LM, was compared to y* with
degrees of freedom of one and @ = 5%. Then, the result was significant towards the SAR-LVs
model. Additionally, the spatial autoregressive coefficient was negative.

Table 1. The estimation result of parameter and spatial autoregressive coeffident for the education

model.
Variable Coefficient
School Infrastructure (b1) 23121
Sociceconomic condition (b2) 0.1286
Constant (b0) 9.6604

Spatial Autoregressive Coefficient (A) -0.002
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1

g general, the SAR-LVs model for the education quality of the senior high school is: [; =
9.6604 — 0.“2 Ei2=?1,i$i Wyl + 23121k, +0.1286k, , where [; is the education quality in the i-th
district, k; is the infrastructure, and k, is socioeconomﬁf)‘ ndition.

The spatial dependence test result was significant. This means there was a correlation between
the education quality of the senior high schools in one district an one in other contiguous
districts. The negative spatial autogeressive coefficient interpreted the opposite of the common
spillover effect, i.e., a district was supported by or gained a spillover effect of the neighboring
districts’ education quality.

The spillover effect of the neighboring districts’ education quality was generally due to the
migration of students to find high-quality schools in the neighboring districts. As a result, the
districts that had high-quality schools, gained the spillover effect of quality education through
high-achieving students from the neighboring districts. In general, high-quality schools in Sumenep
Regency are public schools. Figure 2 draws the distribution of districts with and without public
schools. To illustrate the student migra@@n, an example is provided in the Gapura district (see
Figure 2). Table 2 shows the number of junior high school graduates and new senior high school
students for seven districts in the same year, 2018, based on [23]. This table provides an overview of
the migration data of students entering senior high school among districts. The Gapura District was
used as an example to illustrate student migration (see Figure 2 and Table 2). The Gapura District
has one public school six neighboring neighbors (queen contiguity). Based on Table 2, the
Gapura District has 485 junior high school graduates and 622 new high school students. This means
that there was a migration of students to the Gapura District.

District.shp
Kecamatan shp
There is no public school
There is public scheel

Figure 2. Distribution of public schools in Sumenep Regency.

Table 2. Number of students and public schools for the neighboring of Gapura district.

Number of Public Number of Junior High  Number of New Senior

District Senior High Schools School Graduate Students  High School Students
Kalianget 1 488 744
Kota Sumenep 3 1582 2041
Manding 0 201 93
Batuputih 0 226 143
Gapura 1 485 622




Symmetry 2020, 12, 1375 10 of 16

Batang Batang 0 552 360
Dungkek 0 409 156

The Gapura District received the spillover effect of quality education from neighboring
districts, especially those with no public schools. The quality spillover was due to schools in the
Gapura district having the opportunity to select the best students from the district itself or the
neighboring districts.

The second case was poverty model in East Java province, with an observation unit of 38
regencies. This model had one endogenous latent variable, namely poverty, and three exogenous

ent variables, namely Economy, Human Resource, and Health. Poverty indicators were the
percentage of the poor population (Y1), the index of poverty depth (Y2), and the index of poverty
severity (Y3). Indicators of economics were the percentage of poor people around 15 years old or
more who were unemployed (X1), the percentage of poor people aged 15 years old or more who
were working in agriculture (X2), and the percentage of households gaining Raskin (X3). Raskin is
an Indonesian subsidy program to prcu‘de rice for people who live under the poverty line.
Indicators of Human Resources were the percentage of poor people aged 15 years old and over who
did not complete elementary education (X4), the literacy rate of the poor aged from 15 to 55 years
(X5), and the partic'nltion rates in schools for the poor aged from 13 to 15 years (X6). Health
indicators were the percentage of women using KB (Family planning program) devices in poor
households (X7), the percentage of children under five in poorly inggnunized households (X8), the
percentage of poor households using drinking water (X9), and the percentage of poor households
using private / together latrines (X10). The model is shown in Figure 3.

[ ] [x] [xa]

Figure 3. Model of poverty.

Latent variables were estimated as in the Equations (6) and (9), then were modeled as in the
Equation (11). The estimation of the model parameters as in the Equation (16) used the Matlab
software, and the results are shown in Table 3. The LM test based on Equation (14) used the Matlab
software, and the obtained value LM, was -4965. The value of LM, was compared to y* with
degrees of freedom of one and a = 5%. Then, the result was significant towards the SAR-LVs
model. Meanwhile, the spatial autoregressive coefficient was positive.

Table 3. The estimation result of parameter and spatial autoregressive coefficient for the poverty

model.
Variable Coefficient
Economy (b1) 0.0742
Human Resource (b2) —0.0722

Health (b3) 0.0155
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Constant (b0) 7.0881
Spatial Autoregressive Coefficient (A) 0.2345

1

g general, the SAR-LVs model for the poverty is [; = 7.0881+ 02345%°% Wyl +
0.0742k, — 0.0722k, + 0.0155k; , where [; is poverty in the i-th regency, k;, is Economy, k, is
Human Resource, and kj is Health.

The atial dependence test result was significant. This means there was a correlation between
poverty in one regency and the one in other contiguous regencies. The positive spatial
autoregressive coefficient interpreted the common spillover effect, i.e., a regency gives a poverty
spillover effect to the neighboring regencies. Figure 4 describes the poor people distribution in the
East Java province measured in percent. The percentage of poor people was based on the poverty
data in [24] and was clustered into four quartiles. The regency with the high percentage of poor
people was categorized as the first quartile (red zone), with 20.71%-13.01%. On the other hand, the
fourth quartile (green zone) includes the regencymth 7.13%-3.80% of the poor group. The first
quartile was the regency group with ighest percentage of poor people, and so on until the
fourth quartile was the regency group with the lowest percentage of poor people. According to
Figure 4, the location of regencies in the first quartile was always close to the regencies in the first
and the second quartile. This visualization reinforces the results of the multiplier Lagrange test that
there is a spatial effect where one regency gives the influence of poverty on its neighboring
regencies.

EastJava.shp

B 20.71 - 13.01
13.00 - 9.63
9.62 -7.14

I 713 - 3.80

N

ol unay i ) 3
100 o 100 200 Miles

8

Figure 4. A map of the distribution of poor people in the East Java province (in percent).

The finding of this method provides value for policymakers relating to existing problems. The
first case was the negative sntial autoregressive coefficient for the education quality model. It
interpreted that a district was supported by or gained a spillover effect of the neighboring districts’
education quality through students’ migration. This case needs the policy to strive for quality
standardization for all schools. The second case was the positive spatial autoregressive coefficient
for the poverty model. It interpreted that a regency gives a poverty spillover effect to the
neighboring regencies. Policymakers need this information to assist at the locus of poverty
appropriately.

4. Conclusions

The SAR-LVs model is a standard SAR model in which the independent and dependent
variables are latent variables. The standard SAR model is y* = AWy" + X + €. Tn variable of y* is
changed by the endogenous factor score (1j), and X is changed by the exogenous factor score (). The
estimation of the latent variables uses the WLS method and assumes that the value of A, and @4
are constant. Therefore, the SAR-LVs model can be modeled as I =K + AWI + g where fi=1
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and §=K. The distribution of K and I are K~ Ny, (€%, 1, @(A05'A)™") and I~
Ny (ent, (A5, 071 Ay)_llr). The variables of I and K are random. Thus, the function of 1 is f(I|K),
so that the variable K is no longer random but fixed. The error distribution is obtained through the
properties of the expected value and the variance of the error in the SAR-LVs model, namely
e~Np ((1—2W)en, — KB,0), where © = (I - W) (A}, 07} Ay)_l(] —AW)' . Based on its error

r 2
distribution model, so under the null hypothesis, the LM statisticis LM, = —(p(\nﬂ{i‘jﬁ):] and follows

the aggmptotic distribution of X%,.

me significant limitations of this study need to be considered. Firstly, the number of
endogenous latent variables is one. Future studies can be developed for the higher number of
endogenous latent variables. Secondly, the LM test developed was merely for SAR-LVs. Future
studies can be developed for a spatial error model with latent variables (SEM-LVs).
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Appendix A

Appendix A.1. Matrix Variate Normal Distribution

Defiaion A.1 based on [21] page 56.

The matrix variate normal distribution arises when sampling from the multivariate normal
population. Let x;,..,xy be a random sample of size N from N,(u, E). Define the observation
random matrix as

f

X7 Xz vt Xy X

X1 Xzp ot Xy b'e

_ _ .
X=[ 17 i . i |=@&,Xy,xx)=|"7 | then X'~Nyp(en',Iy QL)

Xpy Xy v Xpy X;,

where ey, = (1,...,1)
Theorem A.1 based on [21] page 56.
If X~ N, ,(M,Z®%), then X'~ N,,(M', ZQ¥)
Teorema A.2based on [21] page 56.
If X~N,,(M, Z®W), then the characteristic function of X is ¢x(Z) = etr({1Z'M — 1/2Z'3Z%)

where t =+ -1

Appendix A.2. Praperties of Matrix and Derivative of Matrix/Vector
Theorem B.1 based on [21] page 56.
tr(AB) = tr(BA) with A, and Bgy,
Properties of derivative matrix/vector
B.2. alghyl = Tr (X™'3X)
B3. d(X™) = =X""(@X)X™"

AT A A\
p.4 AwhA® _ ,(Aw) ,
dx dx =)
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1.

l?!.5.i =(x —As)T(x— As) = —2AT(x — As)

ds
T T T
8.6 BB\ o | (Bw)
T ax ax ® dx @)

ndix A.3. Derivative of the Element of the Information Matrix for the SAR-LVs Model

The first partial derivative of the log-likelihood function L(4,B, ©;1) to A based on the error
distribution in Equation (12) where @ =Ap™'A' =p TAA ;p= (A, 0;'A,); A=(1—
AW) and £ = Al — Kf.

a. The first partial derivative of @ to A

a _ Lo - awya—awy)

70 aa —p (W= AW)' + (I— W)W

0% _pTIWA 4 AW’
3= P (WA'+AW')

b.  The first partial derivative of In|@| to A

Based on B.2

aln|@|
an

20
=Tr ((p_lAA')_lﬁ) = Tr(p(p~*AA)(—p ' (WA’ + AW"))) = —2Tr(A"'W)

c. The first partial derivative of In|A4| to A

Based on B.2:

(I- W)

aln|A|=Tr((]—AW)‘176 — )=TI‘(A‘1W)

i

d. The first partial derivative of A™ to A

Based on B.3:

dlnA~!
P2\

=—I- W) '(-W)(I - W)t =A"'wA™!

e.  The first partial derivative of g0 'eto A

0 le=[(Al-KB) (p'AA )Y YAl —KB) or €0 e =p(l— AKB)Y (1 — AKB)
Based on B.4:
d(e'0~1g)
A
The first partial derivative of the log-likelihood function L(A,B, ©;1) to A based on the error

= —2p(A"'WA'KB)'(I — A~KB)

distribution in Equation (12), point b, ¢, and d
dL(A,B.O;1 1
% =—3 (—2Tr(A7*W)) — Tr(A™'W) + p(A"'WAKB)' (I — AT'KB)

w =p(AT'WAT'KB)'(1 - AT'KB)
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2.

The first partial derivative of the log-likelihood function L(4,B,®;l) to B based on the error
distribution in Equation (12)

Based on B.5:
aL(A, B, ©;
ALABeh = p(A"1K)' (I - A"1KB)
ap
The second partial derivative %

Based on B.3:
2 . [}
9’L@.peb L(’gﬁ’ 0.0 _ p[2(KB)'((A‘1WA‘L)A‘1(A‘1WA‘L)) (1- A7KB) —
(A"'WA™'KB)' (A" WA 1) (KB)]

B2L(LB.O:D)

The second partial derivative 2608

a2L(4,B,0; 1)

B2L(A,B.0:0)

The second partial derivative 2poi

2 .
% = pl(l - A-'KB)'(A'WA~'K) — (A" 'WA~'KB) (A~'K)]

The element of the information matrix

a. The Element (1,1), namely &,

_9’L(LB,6: 1)

Pu =B

@, =p [(A‘1WA‘1Kﬂ)’(ﬂ‘1WA‘L)(K,8) - 2(;(,8)*((,4 “wa-14-1 (A‘1WA‘1))f

(en. — A7IKR)]
if =0 then
@) = pl(WKB)'(WKB) — 2(WKB)' W(en, — A'KB)]
b.  The Element (2,2), namely g
Ypp = E (— —aZLEE;; g;: D
if 2=0 then g =p (K'K)

) =E (—(—p(A‘1K)’(A‘1K))) = p(A~'K) (A'K)

c. The Element (1,2), namely ;5

— [ #LB.e:D
bo=E(- =)

Pap = plAWATKB) (AK) — (en, — A"'KB) (A" ' WA K)]
if A =0 then ‘_I}?LB = p[(wKB)aK_ (Blh _ KB)’(W}(}]
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d. The Element (2,1), Namely tf)s i

~ 92L(A, B,0;1
Pp1 = [(A7'K) (ATWAT'KB) — (A'WA™'K)'(en, — A~'KP)]
if A =0 then
Ve =p [K'(WKB) — (WK)'(en, — KP)]

7.  The information matrix

. . . PR P, q’;{p
if A =0 then the information matrixis Wy = | _
¥, @
B BB
8. Invers of the information matrix when A= 0

C, Cpy Cp
c, cob i where
Cpy = (€, — GG C) " ; Cpp = (=€ G0 ; Cgy = —C€5'C3Cg;and Cpy = (€31 — €51C5C,,)

The element (1,1) of the information matrix inversis ¥ = (¥, — Wjﬁ(ﬁsﬁ)_lﬁsl)_l

¥ = (p(WKB)' (WKB) — 2(WKB)'W'(en, — KB)
—p((WKB)'(WKB) —(en, — KB)'

If the partition matrixis C= [Cl ] then the invers matrix is C™* =
3

W(WKB) — (WKB)W'(en, — KB) + (en, — KB)'WW' (en, — KB)))

¥ = p'(—(en, — KB)WW'(en, —KB))

P = —p ((en, — KB)WW'(en, —KB))
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